Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

If $y=\frac{1}{2}x\sqrt{a^2-x^2}+\frac{a^2}{2}sin^{-1}\frac{x}{a},$ then $\frac{dy}{dx}=$

Options:

$\sqrt{a^2-x^2}$

$\sqrt{a^2+x^2}$

$\frac{1}{\sqrt{a^2-x^2}}$

$\frac{1}{\sqrt{a^2+x^2}}$

Correct Answer:

$\sqrt{a^2-x^2}$

Explanation:

The correct answer is Option (1) → $\sqrt{a^2-x^2}$

$\int\sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}$ [Integration formula]

$\frac{dy}{dx}=\sqrt{a^2-x^2}$