The following system of equations: $x+y-z=7$ does not possess a solution if the value of is: |
3 -3 -4 4 |
4 |
The correct answer is Option (4) → 4 Given matrix: $A = \begin{bmatrix} 1 & 1 & -1 \\ 4 & \lambda & -\lambda \\ 3 & 2 & -4 \end{bmatrix}$ Compute determinant using the first row: $\det(A) = 1 \cdot (\lambda \cdot -4 - (-\lambda) \cdot 2) - 1 \cdot (4 \cdot -4 - (-\lambda) \cdot 3) + (-1) \cdot (4 \cdot 2 - \lambda \cdot 3)$ $= 1(-4\lambda + 2\lambda) - 1(-16 + 3\lambda) - 1(8 - 3\lambda)$ $= -2\lambda + 16 - 3\lambda - 8 + 3\lambda$ $= -2\lambda + 8$ Set determinant = 0 for singularity: $-2\lambda + 8 = 0$ ⟹ $\lambda = 4$ Hence, the system is inconsistent (i.e., does not possess a solution) when $\lambda = 4$. |