The value of $\int\limits_1^3\frac{x^2}{x^3+1}dx$ |
$\frac{1}{3}\log 26$ $\log 14$ $\frac{1}{3}\log 14$ $\log 56$ |
$\frac{1}{3}\log 14$ |
The correct answer is Option (3) → $\frac{1}{3}\log 14$ $\int_{1}^{3} \frac{x^2}{x^3 + 1} \, \mathrm{d}x$ Let $u = x^3 + 1$. $\frac{d}{dx}(x^3 + 1) = 3x^2 \Rightarrow \frac{du}{3} = x^2 \, \mathrm{d}x$. When $x = 1$, $u = 2$. When $x = 3$, $u = 28$. Substitute in the integral: $= \int_{2}^{28} \frac{1}{u} \frac{du}{3}$ $= \frac{1}{3} \int_{2}^{28} \frac{1}{u} \, \mathrm{d}u$ $= \frac{1}{3} \ln |u| \bigg|_{2}^{28}$ $= \frac{1}{3} \left( \ln 28 - \ln 2 \right)$ $= \frac{1}{3} \ln \frac{28}{2}$ $= \frac{1}{3} \ln 14$ |