In the figure, O is the centre of a circle of radius 29 cm. OT ⊥ AB, OQ ⊥ CD and AB is parallel CD. If AB = 40 cm and CD = 42 cm, then the length of PQ is: |
32 cm 20 cm 41 cm 21 cm |
41 cm |
We know that, (hypotenuse) 2 = (perpendicular)2 + (base)2 We have, If, AB= 40 cm, CD = 42 cm then, AP = 20 cm, CQ = 21 cm. In right angled triangle APO and OQC Pythagoras theorem; OA2 = OP2 + PA2 292 = OP2 + 202 841 = OP2 + 400 0P2 = 441 OP = 21 cm. also, OC2 = OQ2 + CQ2 292 = OQ2 + 212 841 = OQ2 + 441 OQ2 = 400 OQ = 20 cm. PQ = OP + OQ = 21 + 20 = 41 cm |