An insect moves along the ellipse $\frac{x^2}{16}+\frac{y^2}{4}=1$, when the rate of change of abscissa is 4 times that of ordinate, then the insect lies in the quadrant : A. I or II B. III or IV C. II or III D. II or IV Choose the correct answer from the options given below : |
D only C only A only B only |
D only |
The correct answer is Option (1) → D only $\frac{x^2}{16}+\frac{y^2}{4}=1$ ...(1) $\frac{2x}{16}+\frac{2y}{4}\frac{dy}{dx}=0$ $\frac{y}{2}\frac{dy}{dx}=-\frac{x}{8}$ $\frac{dy}{dx}=-\frac{x}{y}$ we are given rate of change of abscissa is 4 times ordinate $⇒\frac{dx}{dy}=4$ so $-\frac{x}{y}=\frac{1}{4}$ so $-4x=y$ $4x+y=0$ from (1) $\frac{x^2}{16}+\frac{16x^2}{4}=1⇒\frac{x^2}{16}+4x^2=1$ $\frac{65x^2}{16}=1⇒x=±\sqrt{\frac{16}{65}}⇒y=±4\sqrt{\frac{16}{65}}$ ⇒ Point in 2nd or 4th quadrant |