For what value(s) of k is A = \(\begin{bmatrix}k^2 & 4 \\4 & 2k \end{bmatrix}\) is not a singular matrix |
\(\mathbb R- \{2\}\) \(\mathbb R- \{-2\}\) \(\mathbb R- \{-2,2\}\) None of these |
\(\mathbb R- \{2\}\) |
Firstly we start by determining the values where the matrix will be singular. Finding the determinant and equating it to 0. \(2 { k }^{ 3 } - 16 = 0\) \(2 ({ k }^{ 3 } - 8) = 0\) \({ k }^{ 3 } - 8= 0\) \({ k }^{ 3 } = 8\) k =2 So excluding these values, the matrix will be non-singular for all real values of k |