The random variable X has the following probability distribution
such that $E(x^2) = 2E(X)$, then the value of $b$ is: |
$\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{8}$ |
$\frac{1}{8}$ |
The correct answer is Option (1) → $\frac{1}{8}$ Given probability distribution: $X: 0, 1, 2, 3$ $P(X): a, a, b, b$ Sum of probabilities: $2a + 2b = 1 \Rightarrow a + b = \frac{1}{2}$ Given: $E(X^2) = 2E(X)$ Compute $E(X)$: $E(X) = 0\cdot a + 1\cdot a + 2\cdot b + 3\cdot b = a + 5b$ Compute $E(X^2)$: $E(X^2) = 0^2\cdot a + 1^2\cdot a + 2^2\cdot b + 3^2\cdot b = a + (4+9)b = a + 13b$ Set $E(X^2) = 2E(X)$: $a + 13b = 2(a + 5b) \Rightarrow a + 13b = 2a + 10b \Rightarrow 3b - a = 0 \Rightarrow a = 3b$ Also, $a + b = \frac{1}{2} \Rightarrow 3b + b = 4b = \frac{1}{2} \Rightarrow b = \frac{1}{8}$ $\text{Answer: } b = \frac{1}{8}$ |