If x + y + z = 0, then what is the value of $\frac{x}{(yz)^2}+\frac{y}{(xz)^2}+\frac{z}{(xy)^2}$ ? |
$\frac{xyz}{3}$ $\frac{3}{xyz}$ xyz $\frac{1}{xyz}$ |
$\frac{3}{xyz}$ |
x + y + z = 0 $\frac{x}{(yz)^2}+\frac{y}{(xz)^2}+\frac{z}{(xy)^2}$ If x + y + z = 0 then a3 + b3 + c3 = 3abc $\frac{x}{(yz)^2}+\frac{y}{(xz)^2}+\frac{z}{(xy)^2}$ = \(\frac{x^3 + y^3 + z^3}{(xyz)^2}\) $\frac{x}{(yz)^2}+\frac{y}{(xz)^2}+\frac{z}{(xy)^2}$ = \(\frac{3xyz}{(xyz)^2}\) $\frac{x}{(yz)^2}+\frac{y}{(xz)^2}+\frac{z}{(xy)^2}$ = $\frac{3}{xyz}$ |