What is the value of \(\frac{(2sin A) (1 + sin A)}{1 + sin A + cos A}\) ? |
1 + sin A + cos A 1 + sin A - cos A 2 sin A cos A sin A cos A |
1 + sin A - cos A |
Put sin A = \(\frac{3}{5}\), cos A = \(\frac{4}{5}\) \(\frac{(2sin A) (1 + sin A)}{1 + sin A + cos A}\) = \(\frac{(2 × \frac{3}{5}) (1 + \frac{3}{5})}{1 + \frac{3}{5} + \frac{4}{5}}\) = \(\frac{\frac{6}{5} × \frac{8}{5}}{\frac{12}{5}}\) = \(\frac{4}{5}\) which is true in option b = 1 + sin A - cos A |