2 moles of \(PCl_5\) were heated in a closed vessel of a 2 litre capacity. At equilibrium 40% of \(PCl_5\) dissociated into \(PCl_3\) and \(Cl_2\). The value of the equilibrium constant is |
0.267 0.53 2.63 5.3 |
0.267 |
The correct answer is option 1. 0.267. Let us solve the problem step-by-step to determine the equilibrium constant \(K_c\). The reaction will be as follows: \( PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) \) Initial moles of \(PCl_5\): 2 moles Volume of the vessel: 2 liters Initial concentration of \(PCl_5\): \( [PCl_5]_{\text{initial}} = \frac{2 \text{ moles}}{2 \text{ liters}} = 1 \text{ M} \) 40% of \(PCl_5\) dissociates. Moles of \(PCl_5\) dissociated: \( 2 \text{ moles} \times 0.4 = 0.8 \text{ moles} \) At equilibrium: Moles of \(PCl_5\) remaining: \(2 - 0.8 = 1.2 \text{ moles}\) Moles of \(PCl_3\) formed: 0.8 moles Moles of \(Cl_2\) formed: 0.8 moles \( [PCl_5] = \frac{1.2 \text{ moles}}{2 \text{ liters}} = 0.6 \text{ M} \) \( [PCl_3] = \frac{0.8 \text{ moles}}{2 \text{ liters}} = 0.4 \text{ M} \) \( [Cl_2] = \frac{0.8 \text{ moles}}{2 \text{ liters}} = 0.4 \text{ M} \) The equilibrium expression for the dissociation is: \(K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} \) Substitute the equilibrium concentrations into the expression: \( K_c = \frac{(0.4)(0.4)}{0.6} \) \( K_c = \frac{0.16}{0.6} \) \( K_c = \frac{16}{60}\) \( K_c = \frac{4}{15} \) \( K_c \approx 0.267 \) The value of the equilibrium constant \(K_c\) is \(0.267\). |