A coin is tossed 6 times. The probability of getting at least 4 heads is : |
$\frac{1}{2}$ $\frac{13}{25}$ $\frac{11}{32}$ $\frac{3}{5}$ |
$\frac{11}{32}$ |
The correct answer is Option (3) → $\frac{11}{32}$ The formula for getting binomial distribution, $P(X=k)=\left({^nC}_k\right)p^kq^{n-k}$ for 4 Heads $P(X=4)=\left({^6C}_4\right)(0.5)^4(0.5)^2=\frac{15}{64}$ for 5 Heads $P(X=5)=\left({^6C}_5\right)(0.5)^5(0.5)^1=\frac{6}{64}$ for 6 Heads $P(X=6)=1×\frac{1}{64}=\frac{1}{64}$ P (at lest 4 heads) = $\frac{15}{64}+\frac{6}{64}+\frac{1}{64}=\frac{22}{64}=\frac{11}{32}$ |