Let $\vec a,\vec b,\vec c$ be any three vectors. Then, vectors $\vec u = \vec a×(\vec b×\vec c), \vec v=\vec b×(\vec c×\vec a)$ and $\vec w = \vec c×(\vec a×\vec b)$ are such that they are |
collinear non-coplanar coplanar none of these |
coplanar |
$\vec u+\vec v+\vec w=\\(\vec a.\vec c)\vec b-(\vec a.\vec b)\vec c\\(\vec a.\vec b)\vec c-(\vec b.\vec c)\vec a\\(\vec b.\vec c)\vec a-(\vec a.\vec c)\vec a\\=0$ |