A capacitor of 100 µF, a resistor of resistance $50 \Omega$ and an inductor of inductance 0.5 H are connected in series with a 110 V, 50 Hz AC source. The impedance of the circuit is: |
$31.8 \Omega$ $157 \Omega$ $175 \Omega$ $134.6 \Omega$ |
$134.6 \Omega$ |
The correct answer is Option (4) → $134.6 \Omega$ Impedance, $Z = \sqrt{R^2 + \left(X_L - X_C\right)^2}$ where: $X_L$, Inductive resistance = $ωL$ $X_C$, Capacitive resistance = $\frac{1}{ωC}$ R (Resistor) = 50 Ω Now, $C=100μF=100×10^{-6}F$ $L=0.5H$ $f=50Hz$ $V=110V$ Angular frequency, $ω=2\pi f$ $=2\pi ×50$ $=100\pi\, rad/s$ $∴X_L=ωL$ $=100\pi ×0.5=50\pi Ω$ $≃157.1Ω$ $X_C=\frac{1}{ωC}=\frac{1}{100\pi ×100×10^{-6}}$ $=\frac{1}{0.01\pi}≃31.8Ω$ $∴Z=\sqrt{50^2+(157.8-31.8)^2}$ $=\sqrt{18208.1}$ $≃134.6Ω$ |