Let $f: R \rightarrow(0, \infty)$ and $g: R \rightarrow R$ be twice differentiable functions such that $f''$ and $g''$ are continous functions on $R$. Suppose $f'(2)=g(2)=0, f''(2) \neq 0$ and $g''(2) \neq 0$. If $\lim\limits_{x \rightarrow 2} \frac{f(x) g(x)}{f'(x) g'(x)}=1$, then (a) f has a local maximum at $x=2$ (b) f has a local minimum at $x=2$ (c) $f''(2)>f(2)$ (d) $f(x)-f''(x)=0$ for at least one $x \in R$. |
(b), (d) (b), (c) (a), (b) (a), (c) |
(b), (d) |
We have $\lim\limits_{x \rightarrow 2} \frac{f(x) g(x)}{f'(x) g'(x)}=1$ $\Rightarrow \lim\limits_{x \rightarrow 2} \frac{f'(x) g(x)+f(x) g'(x)}{f''(x) g'(x)+f'(x) g''(x)}=1$ [Using L' Hospital's rule] $\Rightarrow \frac{f'(2) g(2)+f(2) g'(2)}{f''(2) g'(2)+f'(2) g''(2)}=1$ [∵ f', f'', g', g'' are continuous] $\Rightarrow \frac{f(2) g'(2)}{f''(2) g'(2)}=1$ [∵ f'(2) = g(2) = 0] $\Rightarrow f''(2)=f(2)$ $\Rightarrow f''(2)>0$ [∵ f : R → (0, ∞) ∴ f(2) > 0] Thus, we have f'(2) = 0 and f''(2) > 0. So, f has a local minimum at x = 2. Again, f''(2) = f(2) ⇒ f(2) - f''(2) = 0 ⇒ f(x) - f''(x) = 0 at x = 2 ⇒ f(x) - f''(x) = 0 for at least one x ∈ R. |