If $\int f(x) d x=2\{f(x)\}^3+C$, then $f(x)$ is |
$\frac{x}{2}$ $x^3$ $\frac{1}{\sqrt{x}}$ $\sqrt{\frac{x}{3}}$ |
$\sqrt{\frac{x}{3}}$ |
We have, $\int f(x) d x=2\{f(x)\}^3+C$ Differentiating both sides w.r. to, $x$, we get $f(x)=6\{f(x)\}^2 f'(x)$ $\Rightarrow 6 f(x) f'(x)=1$ $\Rightarrow 6 \int f(x) f'(x) d x=\int 1 d x$ $\Rightarrow 6 \int f(x) d(f(x))=\int 1 . d x$ $\Rightarrow 6 \times \frac{\{f(x)\}^2}{2}=x \Rightarrow\{f(x)\}^2=\frac{x}{3} \Rightarrow f(x)=\sqrt{\frac{x}{3}}$ |