If $E_p$ and $E_k$ represents the potential and kinetic energy respectively of an orbital electron, then according to Bohr's theory. |
$E_k=-\frac{E_p}{2}$ $E_k=-E_p$ $E_k=-2E_p$ $E_k=2E_p$ |
$E_k=-\frac{E_p}{2}$ |
The correct answer is Option (1) → $E_k=-\frac{E_p}{2}$ for all the electrons in a given orbit - Energy, $E=-K.E.=\frac{v}{2}$ where, $v$ = Potential energy $∴K.E.=-\frac{v}{2}$ $⇒E_k=-\frac{E_p}{2}$ |