If $\sec \theta-\tan \theta=\frac{x}{y},(0<x<y)$ and $0^{\circ}<\theta<90^{\circ}$, then $\sin \theta$ is equal to: |
$\frac{x^2+y^2}{2 x y}$ $\frac{2 x y}{x^2+y^2}$ $\frac{y^2-x^2}{x^2+y^2}$ $\frac{x^2+y^2}{y^2-x^2}$ |
$\frac{y^2-x^2}{x^2+y^2}$ |
secθ - tanθ = \(\frac{x}{y}\) -----(1) { using , sec²θ - tan²θ = 1 , So, secθ + tanθ = \(\frac{1}{secθ - tanθ}\) } secθ + tanθ = \(\frac{y}{x}\) -----(2) On adding equation 1 and 2. 2 secθ = \(\frac{x}{y}\) + \(\frac{y}{x}\) 2 secθ = \(\frac{x² + y² }{xy}\) secθ = \(\frac{x² + y² }{ 2xy}\) cosθ = \(\frac{2xy }{ x² + y²}\) { using , sin²θ + cos²θ = 1 } sin²θ = 1 - cos²θ = 1 - \(\frac{2xy }{ x² + y²}\) = 1 - \(\frac{4x²y² }{ (x² + y²)² }\) = \(\frac{ (x² + y²)² - 4x²y² }{ (x² + y²)² }\) = \(\frac{ ( y² - x²)² }{ (x² + y²)² }\) sinθ = \(\frac{ ( y² - x²) }{ (x² + y²) }\)
|