Solution of $\frac{dy}{dx}=(1+x^2)(1+y^2)$ is: |
$\tan^{-1}y=x+\frac{x^3}{3}+c$ $\tan^{-1}y=x-\frac{x^3}{3}+c$ $\tan^{-1}y=x^2+\frac{x^3}{3}+c$ $\tan^{-1}y=x^2-\frac{x^3}{3}+c$ |
$\tan^{-1}y=x+\frac{x^3}{3}+c$ |
$\frac{dy}{dx}=(1+x^2)(1+y^2)$ so $\int\frac{1}{1+y^2}dy=\int(1+x^2)dx$ (Integrating both sides) $⇒\tan^{-1}y=x+\frac{x^3}{3}+c$ |