Let the function $f(x)=\tan ^{-1}(\sin x+\cos x)$ be defined on $[0,2 \pi]$. Then, f(x) is |
increasing on $[0, \pi / 4) \cup(5 \pi / 4,2 \pi]$ decreasing on $(\pi / 4,2 \pi)$ increasing on $(0, \pi / 4) \cup(3 \pi / 4,2 \pi)$ decreasing on $[\pi / 4,7 \pi / 4]$ |
increasing on $[0, \pi / 4) \cup(5 \pi / 4,2 \pi]$ |
We have, $f(x) =\tan ^{-1}(\sin x+\cos x)$ $\Rightarrow f'(x) =\frac{1}{1+(\sin x+\cos x)^2} \times(\cos x-\sin x)$ Now, $f'(x)>0 \Rightarrow \cos x-\sin x>0 \Rightarrow x \in[0, \pi / 4) \cup(5 \pi / 4,2 \pi]$ and, $f'(x)<0 \Rightarrow \cos x-\sin x<0 \Rightarrow x \in(\pi / 4,5 \pi / 4)$ Hence, f(x) is increasing on $[0, \pi / 4) \cup(5 \pi / 4,2 \pi]$ and decreasing on $(\pi / 4,5 \pi / 4)$. |