The sides of an equilateral triangle are increasing at the rate of 2 cm/s. The rate at which the area increases, when side is 10 cm is : |
$\frac{10}{3}cm^2/s$ $20\sqrt{3}cm^2/s$ $10\sqrt{3}cm^2/s$ $10cm^2/s$ |
$10\sqrt{3}cm^2/s$ |
The correct answer is Option (3) → $10\sqrt{3}cm^2/s$ Let the side of the equilateral triangle be $x$ cm. Area = $\frac{\sqrt{3}}{4}x^2$ $⇒\frac{dA}{dt}=\frac{\sqrt{3}}{4}×2x×2$ Now, $\left.\frac{dA}{dt}\right|_{x=10}=\frac{\sqrt{3}}{4}×2×10×2=10\sqrt{3}cm^2/s$ |