Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

Match List-I with List-II.

List-I List-II
(A) If $f(x)=log(log\, x)$ then $f'(x)=$ (I) $\frac{1}{x\, log 2}$
(B) If $g(x)=e^{x^2},$ then $g'(x)=$ (II) $\frac{1}{x\, log x}$
(C) ,If $h(x)=\frac{2}{\sqrt{x}}, $ then$ h'(x)=$ (III) $e^{x^2}.2x$
(D) If $h(x)=log_2x,$ then $m'(x)=$ (IV) $-x^{-\frac{3}{2}}$

Choose the correct answer from the options given below :

Options:

(A)-(I), (B)-(IV), (C)-(III), (D)-(II)

(A)-(II), (B)-(III), (C)-(IV), (D)-(I)

(A)-(III), (B)-(II), (C)-(IV), (D)-(I)

(A)-(I), (B)-(III), (C)-(IV), (D)-(II)

Correct Answer:

(A)-(II), (B)-(III), (C)-(IV), (D)-(I)

Explanation:

The correct answer is Option (2) → (A)-(II), (B)-(III), (C)-(IV), (D)-(I)

(A) $f(x)=\log(\log x)$

$f'(x)=\frac{1}{\log x}×\frac{1}{x}=\frac{1}{x\log x}$

(B) $g(x)=e^{x^2}$

$g'(x)=e^{x^2}.2x$

(C) $h(x)=\frac{2}{\sqrt{x}}$

$h'(x)=2×-\frac{1}{2}×x^{-3/2}=-x^{-3/2}$

(D) $h(x)=\log_2x$

$=\frac{\log x}{\log 2}$

$⇒h'(x)=\frac{1}{x\log 2}$