Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Linear Programming

Question:

A car manufacturing plant produces Sedans and SUV's, using limited resources of steel, labour hours, and machine hours.

  • Each Sedan requires 6 tons of steel, 10 labour hours and 8 machine hours.
  • Each SUV requires 9 tons of steel, 15 labour hours and 12 machine hours.
  • Plant has 600 tons of steel, 1200 labour hours and 1000 machine hours.
  • Profit per Sedan is Rs. 50,000 and per SUV is Rs. 80,000

Write the mathematical inequalities representing steel, labour and machine constraints.

Options:

$\begin{matrix}6x+9y≥600\\10x+15y≥1200\\8x+12y≤1000\end{matrix}$

$\begin{matrix}6x+9y≥600\\10x+15y≤1200\\8x+12y≤1000\end{matrix}$

$\begin{matrix}6x+9y≤600\\10x+15y≥1200\\8x+12y≤1000\end{matrix}$

$\begin{matrix}6x+9y≤600\\10x+15y≤1200\\8x+12y≤1000\end{matrix}$

Correct Answer:

$\begin{matrix}6x+9y≤600\\10x+15y≤1200\\8x+12y≤1000\end{matrix}$

Explanation:

The correct answer is Option (4) → $\begin{matrix}6x+9y≤600\\10x+15y≤1200\\8x+12y≤1000\end{matrix}$

The constraints are,

$6x+9y≤600$ → [Steel Constraint]

$10x+15y≤1200$ → [Labour Constraint]

$8x+12y≤1000$ → [Machine Constraint]