A car manufacturing plant produces Sedans and SUV's, using limited resources of steel, labour hours, and machine hours.
|
Write the mathematical inequalities representing steel, labour and machine constraints. |
$\begin{matrix}6x+9y≥600\\10x+15y≥1200\\8x+12y≤1000\end{matrix}$ $\begin{matrix}6x+9y≥600\\10x+15y≤1200\\8x+12y≤1000\end{matrix}$ $\begin{matrix}6x+9y≤600\\10x+15y≥1200\\8x+12y≤1000\end{matrix}$ $\begin{matrix}6x+9y≤600\\10x+15y≤1200\\8x+12y≤1000\end{matrix}$ |
$\begin{matrix}6x+9y≤600\\10x+15y≤1200\\8x+12y≤1000\end{matrix}$ |
The correct answer is Option (4) → $\begin{matrix}6x+9y≤600\\10x+15y≤1200\\8x+12y≤1000\end{matrix}$ The constraints are, $6x+9y≤600$ → [Steel Constraint] $10x+15y≤1200$ → [Labour Constraint] $8x+12y≤1000$ → [Machine Constraint]
|