Match List-I with List-II
Choose the correct answer from the options given below: |
(A)-(IV), (B)-(III), (C)-(II), (D)-(I) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (A)-(III), (B)-(II), (C)-(IV), (D)-(I) (A)-(I), (B)-(II), (C)-(IV), (D)-(III) |
(A)-(III), (B)-(IV), (C)-(II), (D)-(I) |
The correct answer is Option (2) → (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(A) $\cos^{-1} x + \cos^{-1} (-x)$ Using identity: $\cos^{-1} (-x) = \pi - \cos^{-1} x$ Therefore, $\cos^{-1} x + \cos^{-1} (-x) = \cos^{-1} x + (\pi - \cos^{-1} x) = \pi$ Hence, (A) matches with (III) $\pi$. (B) $\csc^{-1} (-x) + \sec^{-1} (-x)$ Recall identities: $\csc^{-1} (-x) = -\csc^{-1} x$ $\sec^{-1} (-x) = \pi - \sec^{-1} x$ (for $x > 1$) Adding, $\csc^{-1} (-x) + \sec^{-1} (-x) = -\csc^{-1} x + \pi - \sec^{-1} x = \pi - (\sec^{-1} x + \csc^{-1} x)$ For particular $x$, this sum equals $\frac{\pi}{2}$. Hence, (B) matches with (IV) $\frac{\pi}{2}$. (C) $\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$ Calculate each: $\tan^{-1} \sqrt{3} = \frac{\pi}{3}$ $\sec^{-1} (-2) = \pi - \sec^{-1} 2 = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$ Difference: $\frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$ Hence, (C) matches with (II) $-\frac{\pi}{3}$. (D) $\tan^{-1} \left(\tan \frac{4\pi}{3}\right)$ Since $\tan^{-1}$ principal value lies in $(-\frac{\pi}{2}, \frac{\pi}{2})$, and $\frac{4\pi}{3} = \pi + \frac{\pi}{3}$, tangent has period $\pi$ so $\tan \frac{4\pi}{3} = \tan \frac{\pi}{3} = \sqrt{3}$ Therefore, $\tan^{-1}(\tan \frac{4\pi}{3}) = \tan^{-1} \sqrt{3} = \frac{\pi}{3}$ Hence, (D) matches with (I) $\frac{\pi}{3}$. |