A circuit containing a $\frac{2}{\pi}H$ inductor, a $\frac{40}{\pi}μF$ capacitor and a 50 Ω resistor in series are connected to an a.c. source of emf $v = 230 \sin 314t$. The amplitude of the current in the circuit is |
3.25 A 4.6 A 5.8 A 6.2 A |
3.25 A |
The correct answer is Option (1) → 3.25 A Given: $L=\frac{2}{\pi}\,H$, $C=\frac{40}{\pi}\,\mu F=\frac{40}{\pi}\times10^{-6}\,F$, $R=50\,\Omega$ Source: $v=230\sin(314t)$ → $\omega=314\,rad/s$ Inductive reactance: $X_L=\omega L=314\cdot\frac{2}{\pi}=\frac{628}{\pi}\approx200\,\Omega$ Capacitive reactance: $X_C=\frac{1}{\omega C}=\frac{1}{314\cdot\frac{40}{\pi}\cdot10^{-6}}=\frac{\pi}{314\cdot40\cdot10^{-6}}$ $X_C=\frac{\pi}{0.01256}\approx250\,\Omega$ Net reactance: $X=X_L-X_C=200-250=-50\,\Omega$ Impedance: $Z=\sqrt{R^2+X^2}=\sqrt{50^2+(-50)^2}=\sqrt{2500+2500}= \sqrt{5000}\approx70.71\,\Omega$ Current amplitude: $I_0=\frac{V_0}{Z}=\frac{230}{70.71}\approx3.25\,A$ Answer: $I_0\approx3.25\,A$ |