A spherical air lens of radii $R_1=R_2=10 cm$ is cut from a glass $(μ=1.5)$ cylinder as shown in figure. Its focal length is $f_1$. If a liquid of refractive index 2 is filled in the space then the focal length of liquid lens becomes $f_2$. Calculate $f_1$ and $f_2$. Choose the correct options from the following. |
$f_1=15 cm, f_2= 30 cm$ $f_1=-15 cm, f_2= +30 cm$ $f_1=-15 cm, f_2= +15cm$ $f_1=-30 cm, f_2= -15 cm$ |
$f_1=-15 cm, f_2= +15cm$ |
The correct answer is Option (3) → $f_1=-15 cm, f_2= +15cm$ Using len's maker formula, $\frac{1}{f}=(μ-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ $⇒\frac{1}{f}=(\frac{1}{1.5}-1)\left[\frac{1}{10}\left(\frac{1}{-10}\right)\right]$ $⇒\frac{1}{f}=\left(-\frac{1}{3}\right)\left[\frac{2}{10}\right]$ $⇒f=-\frac{30}{2}=-15cm$ Case 2: $μ=\frac{μ_1}{μ_m}=\frac{2}{1.5}=\frac{4}{3}$ $⇒\frac{1}{f}=(μ-1)\left[\frac{1}{R_1}-\frac{1}{R_2}\right]$ $=(\frac{4}{3}-1)\left[\frac{1}{10}-\left(\frac{1}{-10}\right)\right]$ $=\left(\frac{1}{3}\right)×\frac{2}{10}$ $⇒f=15cm$ |