Time period of oscillation of a bar magnet in a uniform magnetic field is $T_{o}$. The magnet is cut into 3 equal parts transverse to its length. The new time period of oscillation of one part will be: |
$T_o$ $\frac{T_o}{2}$ $\frac{T_o}{3}$ $\frac{T_{o}}{4}$ |
$\frac{T_o}{3}$ |
The correct answer is Option (3) → $\frac{T_o}{3}$ $T_o$, Initial time period of Magnet = $2π\sqrt{\frac{I}{MB}}$ where, I = Moment of inertia M = Magnetic moment of Bar Magnet B = Magnetic field When the Magnet is cut into 3 pieces, $M'=\frac{M}{3}$ and $I'=\frac{I}{3^3}=\frac{I}{27}$ $T_f=2π\sqrt{\frac{\frac{I}{27}}{\frac{M}{3}×B}}=2π\sqrt{\frac{3}{27}\frac{I}{MB}}$ $=\frac{2πI}{MB}×\frac{1}{3}$ $=\frac{T_o}{3}$ |