The degree of the differential equation $\left(2+(\frac{dy}{dx})^2\right)^{\frac{3}{2}}=a^2\frac{d^2y}{dx^2}$ is: |
6 1 3 2 |
2 |
The correct answer is Option (4) → 2 Given differential equation: $\left( 2 + \left( \frac{dy}{dx} \right)^2 \right)^{\frac{3}{2}} = a^2 \frac{d^2 y}{dx^2}$ Remove the fractional exponent by squaring both sides: $\left[ \left( 2 + \left( \frac{dy}{dx} \right)^2 \right)^{\frac{3}{2}} \right]^2 = \left( a^2 \frac{d^2 y}{dx^2} \right)^2$ $\left( 2 + \left( \frac{dy}{dx} \right)^2 \right)^3 = a^4 \left( \frac{d^2 y}{dx^2} \right)^2$ The highest order derivative is $\frac{d^2 y}{dx^2}$, and its power is $2$. |