If $(x^2 +\frac{1}{49x^2}) = 15\frac{5}{7}$, then what is the value of $(x + \frac{1}{7x})$ ? |
7 ±7 ±4 4 |
±4 |
We know that, If , x2 + \(\frac{1}{x^2}\) = b and x + \(\frac{1}{x}\) = \(\sqrt {b + 2 \times x \times \frac{1}{x}}\) $(x^2 +\frac{1}{49x^2}) = 15\frac{5}{7}$, = $\frac{110}{7}$ then what is the value of $(x + \frac{1}{7x})$ = \(\sqrt {\frac{110}{7} + \frac{2}{7}}\) = \(\sqrt {\frac{112}{7}}\) $(x + \frac{1}{7x})$ = \(\sqrt {16}\) = ±4 |