A charge Q is distributed over two concentric hollow spheres of radii r and R (< r) such that the surface densities are equal. The potential at the common centre is |
$\frac{Q(R^2+r^2)}{4\pi \epsilon_0(r+R)^3}$ $\frac{Q}{r+R}$ zero $\frac{Q(R+r)}{4\pi \epsilon_0(r^2+R^2)}$ |
$\frac{Q(R+r)}{4\pi \epsilon_0(r^2+R^2)}$ |
$\text{Let charge on the two spheres are }Q_1 \text{ and }Q_2 \text{ respectively.}$ $ Q_1 + Q_2 = Q$ $ \frac{Q_1}{4\pi r^2} = \frac{Q_2}{4\pi R^2}$ $ Q_2 = \frac{Q_1 R^2}{r^2}$ $Q_1(1+ \frac{R^2}{r^2}) = Q , Q_1 = \frac{Qr^2}{r^2+R^2} , Q_2 = \frac{QR^2}{r^2+R^2}$ $ V = \frac{1}{4\pi \epsilon_0}(\frac{Q_1}{r}+\frac{Q_2}{R}) = \frac{Q(R+r)}{4\pi \epsilon_0(r^2+R^2)}$ |