Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

The function f : R → R is defined by for $f(x)=\cos^2x+\sin^4x$ for x ∈ R, then what is the range of f.

Options:

$[\frac{1}{4},1]$

$[\frac{1}{2},1]$

$[\frac{3}{4},1]$

$[\frac{1}{9},1]$

Correct Answer:

$[\frac{3}{4},1]$

Explanation:

$f(x)=\cos^2x+\sin^4x$

$y=f(x)=\cos^2x+\sin^2x(1-\cos^2x)$

$y=\cos^2x+\sin^2x-\sin^2x\cos^2x$

$y=1-\sin^2x\cos^2x$

$y=1-[\frac{1}{4}]×[\sin^22x]$

$\frac{3}{4}≤f(x)≤1$, (Because $0≤\sin^22x≤1$)

$f(R)∈[\frac{3}{4},1]$