If $f:R → R$ is defined by $f(x) =x^2-3x+2$ then $f(f(x))$ is : |
$x^4-6x^3+10x^2-2x$ $x^4-2x^3+10x^2-3x$ $x^4-6x^3+10x^2-3x$ $2x^4+6x^3-10x^2+3x$ |
$x^4-6x^3+10x^2-3x$ |
The correct answer is Option (3) → $x^4-6x^3+10x^2-3x$ $f(x) =x^2-3x+2$ so $f(f(x))=(x^2-3x+2)^2-3(x^2-3x+2)+2$ $=x^4+9x^2+4-6x^3-12x+4x^2-3x^2+9x-6+2$ $x^4-6x^3+10x^2-3x$ |