Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

\(\int \frac{1-\tan x}{1+\tan x}dx\)=

Options:

\(log|\cos x+\sin x|+c\)

\(log|\cos x-\sin x|+c\)

\(log|\sin x|+c\)

\(-log|\cos x|+c\)

Correct Answer:

\(log|\cos x+\sin x|+c\)

Explanation:

$I=\int\frac{1-tanx}{1+tanx}dx$

$=\int\frac{1-\frac{sinx}{cosx}}{1+\frac{sinx}{cosx}}dx=\int\frac{cosx-sinx}{cosx+sinx}dx$

Let $cosx+sinx=t$

$⇒dt=(-sinx+cosx)dx$

$⇒I=\int\frac{dt}{t}=\log|t|+C$

$=\log|cosx+sinx|+C$