\(\int \frac{1-\tan x}{1+\tan x}dx\)= |
\(log|\cos x+\sin x|+c\) \(log|\cos x-\sin x|+c\) \(log|\sin x|+c\) \(-log|\cos x|+c\) |
\(log|\cos x+\sin x|+c\) |
$I=\int\frac{1-tanx}{1+tanx}dx$ $=\int\frac{1-\frac{sinx}{cosx}}{1+\frac{sinx}{cosx}}dx=\int\frac{cosx-sinx}{cosx+sinx}dx$ Let $cosx+sinx=t$ $⇒dt=(-sinx+cosx)dx$ $⇒I=\int\frac{dt}{t}=\log|t|+C$ $=\log|cosx+sinx|+C$ |