The cost of manufacturing x units of a commodity is $27+15x+3x^2$. Then the value of output (x) when average cost is equal to Marginal cost is : |
2 3 4 5 |
3 |
The correct answer is Option (2) → 3 The cost function is, $C(x)=27+15x+3x^2$ Average cost, $AC=\frac{C(x)}{x}=\frac{27}{x}+15+3x$ Marginal cost, $MC=\frac{d}{dx}(27+15x+3x^2)$ $=15+6x$ $AC=MC$ $\frac{27}{x}+15+3x=15+6x$ $⇒\frac{27}{x}=6x-3x$ $⇒x^2=9⇒x=3$ |