Let X∼Bin (3, p) be a binomial random variable. If $P(X=3)=\frac{1}{12}P(X=1)$, then p is equal to : |
$\frac{1}{3}$ $\frac{2}{3}$ $\frac{2}{5}$ $\frac{3}{5}$ |
$\frac{1}{3}$ |
The correct answer is Option (1) → $\frac{1}{3}$ for a binomial distribution, $P(X=k)=\left({^nC}_k\right)p^k(1-p)^{n-k}$ and, $P(X=3)=\frac{1}{12}P(X=1)$ $p^3=\frac{1}{12}3p(1-p)^2$ $⇒3p^2+2p-1=0$ $⇒(p+1)(p-\frac{1}{3})=0$ ∴ Probability (p) = $\frac{1}{3}$ |