If $y=x^2 \log x$ then $\frac{d^2 y}{d x^2}=$ |
$\left(x^2+2 x+1\right) \log x$ $\log \left(3 e ~x^2\right)$ $\log \left(x+x^2\right)$ $\log \left(e^3 x^2\right)$ |
$\log \left(e^3 x^2\right)$ |
The correct answer is Option (4) - $\log \left(e^3 x^2\right)$ $y=x^2 \log x$ $\frac{dy}{dx}=2x\log x+x$ $\frac{d^2y}{dx^2}=2\log x+2+1$ $=\log x^2+3\log_e$ $=\log e^3x^2$ |