Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Relations and Functions

Question:

For the function $f(x) = 2x^3-9x^2+12x-5, x \in [0, 3]$, match List-I with List-II.

List-I

List-II

 (A) Absolute maximum value 

 (I) 3

 (B) Absolute minimum value

 (II) 0

 (C) Point of maxima

 (III) -5 

 (D) Point of minima

 (IV) 4

Choose the correct answer from the options given below:

Options:

(A) - (IV), (B) - (II), (C) - (I), (D) - (III)

(A) - (II), (B) - (III), (C) - (I), (D) - (IV)

(A) - (IV), (B) - (III), (C) - (II), (D) - (I)

(A) - (IV), (B) - (III), (C) - (I), (D) - (II)

Correct Answer:

(A) - (IV), (B) - (III), (C) - (I), (D) - (II)

Explanation:

The correct answer is Option (4) - (A) - (IV), (B) - (III), (C) - (I), (D) - (II)

$f(x) = 2x^3-9x^2+12x-5$

$f'(x)=6x^2-18x+12=0$

$x^2-3x+2=0$

$(x-2)(x-1)=0$

$x=1,2$ → critical points

so $f(0)=-5$ → minima

$f(1)=0$

$f(2)=-1$

$f(3)=4$ → maxima

so (A) - (IV), (B) - (III), (C) - (I), (D) - (II)