if sin ( x - y) = 1/2 and cos (x + y) = 1/2, then what is the value of sinx cos x - 1 sin2 x - cos2 x sec x ? |
- \(\frac{1}{√2}\) 3/4 $\sqrt{2}+1$ 1 |
- \(\frac{1}{√2}\) |
We are given that :- sin (x-y) = \(\frac{1}{2}\) { we know, sin 30º = \(\frac{1}{2}\) } So, ( x - y) = 30º ---(1) & cos (x + y) = \(\frac{1}{2}\) { we know, cos 60º = \(\frac{1}{2}\) } So, ( x + y ) = 60º ----(2) On adding equation 1 and 2. 2x = 90º x = 45º Now, sinx cos x - 1 sin2 x - cos2 x sec x = sin45º. cos45º - 1 sin245º - cos245º sec 45º = \(\frac{1}{√2}\) × \(\frac{1}{√2}\) - \(\frac{1}{2}\) - \(\frac{√2}{2}\) = \(\frac{1}{2}\) - \(\frac{1}{2}\) - \(\frac{√2}{2}\) = - \(\frac{1}{√2}\) |