If $e^x + e^y = e^{x+y}$, then $\frac{dy}{dx}=$ |
$e^{x-y}$ $e^{y-x}$ $-e^{y-x}$ $e^{x+y}$ |
$-e^{y-x}$ |
The correct answer is Option (3) → $-e^{y-x}$ Given: $e^x + e^y = e^{x + y}$ Rewrite the right side: $e^{x + y} = e^x \cdot e^y$ So the equation becomes: $e^x + e^y = e^x e^y$ Rearranged: $e^x e^y - e^y = e^x$ $e^y (e^x - 1) = e^x$ Therefore, $e^y = \frac{e^x}{e^x - 1}$ Taking natural log: $y = \ln \left( \frac{e^x}{e^x - 1} \right) = x - \ln (e^x - 1)$ Differentiate both sides w.r.t $x$: $\frac{dy}{dx} = 1 - \frac{d}{dx} \ln (e^x - 1) = 1 - \frac{e^x}{e^x - 1} = \frac{e^x - 1 - e^x}{e^x - 1} = \frac{-1}{e^x - 1}$ Recall from above: $e^y = \frac{e^x}{e^x - 1} \Rightarrow e^x - 1 = \frac{e^x}{e^y}$ So, $\frac{dy}{dx} = \frac{-1}{\frac{e^x}{e^y}} = -\frac{e^y}{e^x} = -e^{y - x}$ |