If $\vec a =\hat i +\hat j+\hat k$ and $\vec b =\hat i-2\hat j+\hat k$, then the vector $\vec c$ such that $\vec a.\vec c = 2$ and $\vec a ×\vec c =\vec b$ is |
$\frac{1}{3}(\hat i-2\hat j+\hat k)$ $\frac{1}{3}(-\hat i+2\hat j+5\hat k)$ $\frac{1}{3}(\hat i+2\hat j-5\hat k)$ $\frac{1}{3}(-\hat i+2\hat j-5\hat k)$ |
$\frac{1}{3}(-\hat i+2\hat j+5\hat k)$ |
Let $\vec c = x\hat i+y\hat j+z\hat k$. Then, $\vec a.\vec c = 2$ and $\vec a ×\vec c =\vec b$ $⇒\vec a.\vec c = 2$ and $(\vec a ×\vec c).\vec c=\vec b.\vec c$ $⇒\vec a.\vec c = 2$ and $\vec b.\vec c=0$ $[∵(\vec a ×\vec c).\vec c=0]$ $⇒x+y+z=2$ and $x-2y+z=0$ $⇒y=\frac{2}{3}$ and $x+z=\frac{4}{3}$ Clearly, option (2) satisfies the above conditions. |