$\int\limits_0^2\left(x^2+1\right) d x$ is equal to |
$\frac{14}{3}$ 4 10 8 |
$\frac{14}{3}$ |
The correct answer is Option (1) → $\frac{14}{3}$ $\int\limits_0^2\left(x^2+1\right) d x=\left[\frac{x^3}{3}+x\right]_0^2$ $⇒\frac{8}{3}+2-0=\frac{8+6}{3}=\frac{14}{3}$ |