If the interval in which the function $f(x)=\frac{x}{x^2+1}$ is strictly increasing is, $(-a, a)$, then a is equal to |
1 2 3 4 |
1 |
The correct answer is Option (1) → 1 Given: $f(x) = \frac{x}{x^2 + 1}$ Differentiate using quotient rule: $f'(x) = \frac{(x^2 + 1)(1) - x(2x)}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}$ Function is strictly increasing where $f'(x) > 0$: $\frac{1 - x^2}{(x^2 + 1)^2} > 0 \Rightarrow 1 - x^2 > 0$ $\Rightarrow x^2 < 1 \Rightarrow -1 < x < 1$ Thus, function is strictly increasing in the interval $(-1, 1)$. Hence, $a = 1$. |