Let $f(x)=3 x^2+4 x g^{\prime}(1)+g^{\prime \prime}(2)$ and, $g(x)=2 x^2+3 x f^{\prime}(2)+f^{\prime \prime}(3)$ for all $x \in R$. Then, |
$f^{\prime}(1)=22+12 f^{\prime}(2)$ $g^{\prime}(2)=44+12 g^{\prime}(1)$ $f^{\prime \prime}(3)+g^{\prime \prime}(2)=10$ all the above |
all the above |
We have, $f(x)=3 x^2+4 x g^{\prime}(1)+g^{\prime \prime}(2)$ ......(i) $g(x)=2 x^2+3 x f^{\prime}(2)+f^{\prime \prime}(3)$ ......(ii) ∴ $f^{\prime}(x)=6 x+4 g^{\prime}(1)$ ......(iii) and, $g^{\prime}(x)=4 x+3 f^{\prime}(2)$ ......(iv) $\Rightarrow f^{\prime \prime}(x)=6$ ......(v) and, $g^{\prime \prime}(x)=4$ ......(vi) Putting x = 1 in (iii) and (iv), we get $f^{\prime}(1) =6+4 g^{\prime}(1)$ and $g^{\prime}(1)=4+3 f^{\prime}(2)$ $\Rightarrow f^{\prime}(1) =6+4\left\{4+3 f^{\prime}(2)\right\}$ $\Rightarrow f^{\prime}(1) =22+12 f^{\prime}(2)$ Putting x = 2 in (iv), we get $g^{\prime}(2)=8+3 f^{\prime}(2)$ $\Rightarrow g^{\prime}(2)=8+3\left\{12+4 g^{\prime}(1)\right\}$ $\left[\begin{array}{l}\text { Putting } x=2 \text { in (iii) we get } \\ f^{\prime}(2)=12+4 g^{\prime}(1)\end{array}\right]$ $\Rightarrow g^{\prime}(2)=44+12 g^{\prime}(1)$ Putting x = 3 in (v) and x = 2 in (vi), we get $f^{\prime \prime}(3)=6$ and $g^{\prime \prime}(2)=4$ $\Rightarrow f^{\prime \prime}(3)+g^{\prime \prime}(2)=6+4=10$ |