A $2×3$ matrix $A=[a_{ij}]$ whose element $a_{ij}$ is given by $a_{ij}= 2i+j^2$ is : |
$\begin{bmatrix} 4 & 6 & 8\\5 & 8 & 10\end{bmatrix}$ $\begin{bmatrix} 3 & 6 & 11\\5 & 8 & 13\end{bmatrix}$ $\begin{bmatrix} 4 & 5\\6 & 8 \\11 & 13\end{bmatrix}$ $\begin{bmatrix} 3 & 5\\6 & 8 \\11 & 13\end{bmatrix}$ |
$\begin{bmatrix} 3 & 6 & 11\\5 & 8 & 13\end{bmatrix}$ |
The correct answer is Option (2) → $\begin{bmatrix} 3 & 6 & 11\\5 & 8 & 13\end{bmatrix}$ $\begin{bmatrix} a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\end{bmatrix}=\begin{bmatrix}2(1)+(1)^2&2(1)+(2)^2&2(1)+(3)^2\\2(2)+(1)^2&2(2)+(2)^2&2(2)+(3)^2\end{bmatrix}$ $=\begin{bmatrix} 3 & 6 & 11\\5 & 8 & 13\end{bmatrix}$ |