Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Three-dimensional Geometry

Question:

Match List-I with List-II:

List-I

List-II

(A) $4\hat i-2\hat j-4\hat k$

(I) A vector perpendicular to both $\hat i+2\hat j+\hat k$ and $2\hat i+2\hat j+3\hat k$

(B) $-4\hat i-4\hat j + 2\hat k$

(II) Direction ratios are $-2, 1, 2$

(C) $2\hat i-4\hat j + 4\hat k$

(III) Angle with the vector $\hat i-2\hat j-\hat k$ is $\cos^{-1}(\frac{1}{\sqrt{6}})$

(D) $4\hat i-\hat j-2\hat k$

(IV) Dot product with $-2\hat i+\hat j+ 3\hat k$ is 10

Choose the correct answer from the options given below:

Options:

(A)-(I), (B)-(IV), (C)-(II), (D)-(III)

(A)-(II), (B)-(IV), (C)-(III), (D)-(I)

(A)-(II), (B)-(III), (C)-(IV), (D)-(I)

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Correct Answer:

(A)-(II), (B)-(IV), (C)-(III), (D)-(I)

Explanation:

The correct answer is Option (2) → (A)-(II), (B)-(IV), (C)-(III), (D)-(I)

(A) $4\hat i-2\hat j-4\hat k$ have d.c. as -

$\frac{4}{\sqrt{36}}\hat i-\frac{2}{\sqrt{36}}\hat j-\frac{4}{\sqrt{36}}\hat k$

$\frac{2}{3}\hat i-\frac{1}{3}\hat j-\frac{2}{3}\hat k$

∴ D.r. is → 2, -1, 2 or -2, 1, 2

(B) $(-4\hat i-4\hat j + 2\hat k).(-2\hat i+\hat j+3\hat k)=8-4+6$

$=10$

(C) $\cos θ=\frac{2(1)+(-4)(-2)+(4)(-1)}{\sqrt{36}\sqrt{6}}=\frac{2+8-4}{6\sqrt{6}}=\frac{1}{\sqrt{6}}$

(D) $\begin{vmatrix}\hat i&\hat j&\hat k\\1&2&1\\2&2&3\end{vmatrix}=4\hat i-\hat j-2\hat k$

∴ This is perpendicular to both of them.