Match List-I with List-II:
Choose the correct answer from the options given below: |
(A)-(I), (B)-(IV), (C)-(II), (D)-(III) (A)-(II), (B)-(IV), (C)-(III), (D)-(I) (A)-(II), (B)-(III), (C)-(IV), (D)-(I) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) |
(A)-(II), (B)-(IV), (C)-(III), (D)-(I) |
The correct answer is Option (2) → (A)-(II), (B)-(IV), (C)-(III), (D)-(I) (A) $4\hat i-2\hat j-4\hat k$ have d.c. as - $\frac{4}{\sqrt{36}}\hat i-\frac{2}{\sqrt{36}}\hat j-\frac{4}{\sqrt{36}}\hat k$ $\frac{2}{3}\hat i-\frac{1}{3}\hat j-\frac{2}{3}\hat k$ ∴ D.r. is → 2, -1, 2 or -2, 1, 2 (B) $(-4\hat i-4\hat j + 2\hat k).(-2\hat i+\hat j+3\hat k)=8-4+6$ $=10$ (C) $\cos θ=\frac{2(1)+(-4)(-2)+(4)(-1)}{\sqrt{36}\sqrt{6}}=\frac{2+8-4}{6\sqrt{6}}=\frac{1}{\sqrt{6}}$ (D) $\begin{vmatrix}\hat i&\hat j&\hat k\\1&2&1\\2&2&3\end{vmatrix}=4\hat i-\hat j-2\hat k$ ∴ This is perpendicular to both of them. |