If three cells are connected in parallel as shown in figure, then equivalent emf would be: |
$E_{eq}=\frac{\sum\limits_{i=0}^3E_i/r_i}{\sum\limits_{i=0}^3r_i}$ $E_{eq}=\frac{\sum\limits_{i=0}^3r_i/E_i}{\sum\limits_{i=0}^31/E_i}$ $E_{eq}=\frac{\sum\limits_{i=0}^3E_i/r_i}{\sum\limits_{i=0}^31/r_i}$ $E_{eq}=\frac{\sum\limits_{i=0}^3r_i/E_i}{\sum\limits_{i=0}^3r_i}$ |
$E_{eq}=\frac{\sum\limits_{i=0}^3E_i/r_i}{\sum\limits_{i=0}^31/r_i}$ |
The correct answer is Option (3) → $E_{eq}=\frac{\sum\limits_{i=0}^3E_i/r_i}{\sum\limits_{i=0}^31/r_i}$ As cells are connected in parallel $E_{eq}=\frac{\frac{E_1}{r_1}+\frac{E_2}{r_2}+\frac{E_3}{r_3}}{\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}}=\frac{\sum\limits_{i=0}^3E_i/r_i}{\sum\limits_{i=0}^31/r_i}$ [By Ohm's law] |