Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Financial Mathematics

Question:

A sum of ₹60,000 invested at r% compounded quarterly will provide payments at ₹600 each at the end of every three months. Then the value of r is :

Options:

8%

4%

2%

5%

Correct Answer:

4%

Explanation:

The correct answer is Option (2) → 4%

formula for present value of annuity,

$PV=P×\left[\frac{1-\left(1+\frac{r}{n}\right)^{-n}}{\frac{r}{n}}\right]$

$60,000=600×\left[\frac{1-\left(1+\frac{r}{4}\right)^{-4}}{\frac{r}{4}}\right]$

$\frac{100r}{4}=1-\left(1+\frac{r}{4}\right)^{-4}$

$\frac{100r}{4}=1-\frac{4}{4+r}$

$⇒r≃4\%$