Let $A =\begin{bmatrix}0&0&-1\\0&-1&0\\1&0&0\end{bmatrix}$. The only correct statement about the matrix A, is |
$A^{-1}$ does not exist $A=(-1)$ I is a unit matrix A is a zero matrix $A^2 = I$ |
$A^2 = I$ |
We have, $|A|=≠0$. So, $A^{-1}$ exists. Clearly, $A≠(-1)$ I and A is not a zero or null matrix. So, options (1), (2) and (3) are not correct. Now, $A^2=\begin{bmatrix}0&0&-1\\0&-1&0\\1&0&0\end{bmatrix}\begin{bmatrix}0&0&-1\\0&-1&0\\1&0&0\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&0\\1&0&0\end{bmatrix}=I$ Hence, option (4) is correct. |