The area of region bounded by the curves $y=x^2+2$, y = -x, x = 0 and x = 1 is |
$\frac{1}{16}$ $\frac{3}{16}$ $\frac{17}{6}$ $\frac{5}{16}$ |
$\frac{17}{6}$ |
The correct answer is Option (3) - $\frac{17}{6}$ $y=x^2+2, y = -x$, $x = 0$ and $x = 1$ area = $\int\limits_0^1x^2+2dx+\frac{1}{2}×1×1$ $=\left[\frac{x^3}{3}+2x\right]_0^1+\frac{1}{2}$ $=\frac{1}{3}+2+\frac{1}{2}$ $=\frac{12+2+3}{6}$ $=\frac{17}{6}$ sq. units |