If $\vec a+\vec b+\vec c=0$ and $|\vec a| = 5,|\vec b|=3, |\vec c| = 7$, then the acute angle between $\vec a$ and $\vec b$ is |
$\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{\pi}{6}$ $\frac{\pi}{3}$ |
$\frac{\pi}{3}$ |
The correct answer is Option (4) → $\frac{\pi}{3}$ Given: $\vec{a} + \vec{b} + \vec{c} = 0$ ⟹ $\vec{a} + \vec{b} = -\vec{c}$ Now take modulus square on both sides: $|\vec{a} + \vec{b}|^2 = |\vec{c}|^2$ $|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{c}|^2$ Substitute values: $25 + 9 + 2\vec{a} \cdot \vec{b} = 49$ ⟹ $34 + 2\vec{a} \cdot \vec{b} = 49$ ⟹ $2\vec{a} \cdot \vec{b} = 15$ ⟹ $\vec{a} \cdot \vec{b} = \frac{15}{2}$ Now, use the dot product formula: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$ $\frac{15}{2} = 5 \cdot 3 \cdot \cos\theta = 15\cos\theta$ ⟹ $\cos\theta = \frac{1}{2}$ ⟹ $\theta = \frac{\pi}{3} = 60^\circ$ Answer: $60^\circ$ |