Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

The relation R in R (set of real numbers) is defined by $R = \{(a, b): a≤ b^3\}$, then R is

Options:

Reflexive relation

Transitive but not symmetric

Reflexive and transitive but not symmetric

Neither reflexive nor symmetric nor transitive

Correct Answer:

Neither reflexive nor symmetric nor transitive

Explanation:

The correct answer is Option (4) → Neither reflexive nor symmetric nor transitive

Given: $R = \{(a,b) : a \le b^3\}$

Reflexive: For $(a,a)$, $a \le a^3$ must hold for all $a \in \mathbb{R}$.

Counterexample: $a = \frac{1}{2}$, $\frac{1}{2} \leq \left(\frac{1}{2}\right)^3 = \frac{1}{8}$. Not reflexive.

Symmetric: If $a \le b^3$, then $b \le a^3$ must hold.

Counterexample: $a = 1$, $b = 2$, $1 \le 8$ true, but $2 \le 1$ false. Not symmetric.

Transitive: If $a \le b^3$ and $b \le c^3$, then $a \le c^3$ must hold for all real numbers.

Counterexample: $a=2$, $b=1.5$, $c=1.1$: $2 \le (1.5)^3=3.375$ true, $1.5 \le (1.1)^3 \approx 1.331$ false. Not transitive.

Conclusion: Neither reflexive nor symmetric nor transitive.